

# RENCO MCFR Block



According to EN 15804 ISO 21930 ISO 14025



### MCFR Block

### 1. General Information

| Manufacturer Name:                | RENCO – Manisa/Turkey Factory<br>Dilek, D565, 45804 Saruhanlı/Manisa, Turkey                                                          |  |  |  |  |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Program Operator:                 | ASTM International<br>100 Barr Harbor Drive<br>West Conshohocken, PA<br>19428-2959, USA                                               |  |  |  |  |  |  |  |  |
| Declaration Number:               | EPD 252                                                                                                                               |  |  |  |  |  |  |  |  |
| Reference PCR:                    | ISO 21930: 2017                                                                                                                       |  |  |  |  |  |  |  |  |
| Date of Issuance:                 | September 1, 2021                                                                                                                     |  |  |  |  |  |  |  |  |
| End of Validity:                  | September 1, 2026                                                                                                                     |  |  |  |  |  |  |  |  |
| Product Name:                     | MCFR Block                                                                                                                            |  |  |  |  |  |  |  |  |
| EPD Owner:                        | RENCO                                                                                                                                 |  |  |  |  |  |  |  |  |
| Declared Unit:                    | 1 kg of MCFR Block                                                                                                                    |  |  |  |  |  |  |  |  |
| EPD Scope:                        | Cradle-to-gate (A1, A2, and A3)                                                                                                       |  |  |  |  |  |  |  |  |
| Verification:                     | ISO 21930 serves as the core PCR. Independent verification of the declaration according to ISO 14025 and ISO 21930. Internal external |  |  |  |  |  |  |  |  |
| LCA Reviewer<br>and EPD Verifier: | Timothy S. Brooke<br>ASTM International                                                                                               |  |  |  |  |  |  |  |  |





#### **MCFR Block**

### 2. Product

#### 2.1 Product Description

The declared product is MCFR Blocks. Mineral Composite Fiber Reinforced (MCFR) are a type of composite material (CM). CM's refer to products made from multiple materials with significantly different physical or chemical properties.

#### 2.2 Application

MCFR Blocks are monoblock elements using in building systems. These blocks stack in a simple interlocking idea and are adhesively joined to form monolithic structures.

#### 2.3 Technical Data

Table 1 provides technical data for MCFR Blocks.

| Table 1: Technical Data |              |                   |  |  |  |  |  |  |
|-------------------------|--------------|-------------------|--|--|--|--|--|--|
| Name                    | Value        | Unit              |  |  |  |  |  |  |
| Density                 | 244.00       | kg/m <sup>3</sup> |  |  |  |  |  |  |
| Block Size              | 20 x 20 x 40 | cm                |  |  |  |  |  |  |

#### 2.4 Base Materials

Table 2 provides base materials data for MCFR Blocks.

| Table 2: Product Ingredients |                          |       |   |  |  |  |  |  |  |
|------------------------------|--------------------------|-------|---|--|--|--|--|--|--|
| Component                    | Ingredient Name          | Valu  | e |  |  |  |  |  |  |
| MCFR Blocks                  | PET Recycled Resin       | 20-25 | % |  |  |  |  |  |  |
|                              | Calcium Carbonate        | 30-40 | % |  |  |  |  |  |  |
|                              | E-Glass Multi End Roving | 15-25 | % |  |  |  |  |  |  |
|                              | Aluminum Hydroxide       | 10-20 | % |  |  |  |  |  |  |
|                              | Other                    | <5    | % |  |  |  |  |  |  |





#### **MCFR Block**

### 3. LCA Calculation Rules

#### 3.1 Declared Unit

The declared unit is 1 kg MCFR Blocks produced at Renco's facility in Turkey.

#### 3.2 System Boundary

The system boundary for this study is limited to a cradle-to-gate focus. (see also Table 4):

#### A1 Raw material supply: Extraction, handling, and processing of input materials.

*A2 Transportation:* Transportation of all input materials from the suppliers to the gate of the manufacturing facility.

**A3** *Manufacturing*: The preparation processes of MCFR Block units at Renco's manufacturing facility. This phase also includes the operations of the manufacturing facility and all process emissions that occur at the production facility.

#### 3.3 Estimates and Assumptions

All significant foreground data was gathered from the manufacturer based on measured values.

#### 3.4 Cut-off Criteria

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows:

- All inputs and outputs for which data are available are included in the calculated effects and no collected core process data are excluded.
- A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy consumption and mass of inputs.
- All flows known to contribute a significant impact or to uncertainty are included.
- The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory.

No material or energy input or output was knowingly excluded from the system boundary.

#### 3.5 Background Data and 3.6 Data Quality

Data was gathered for the primary material and energy inputs used in production for calendar year 2020. Table 3 describe each LCI data source for raw materials (A1), transportation (A2) and the core manufacture process (A3). Table 3 also includes a data quality assessment for on the basis of the technological, temporal, and geographical representativeness.





**MCFR Block** 

| Table 3: Secondary Data Sources and Data Quality Assessment |                                                                                               |           |      |                                                                                                                                                                                                            |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A1: Raw Materi                                              | al Inputs                                                                                     |           |      |                                                                                                                                                                                                            |  |  |  |  |
| Inputs                                                      | LCI Data Source                                                                               | Geography | Year | Data Quality Assessment                                                                                                                                                                                    |  |  |  |  |
| PET Recycled<br>Resin                                       | USLCI 2014: Recycled<br>postconsumer PET pellet<br>NREL/RNA U                                 | Global    | 2014 | <b>Technology:</b> very good<br>Process models average global technology<br><b>Time:</b> very good<br>Data is <10 years old<br><b>Geography:</b> very good<br>Data is representative of global conditions. |  |  |  |  |
| Calcium                                                     | IMA-NA Calcium Carbonate                                                                      | North     | 2016 | Technology: very good                                                                                                                                                                                      |  |  |  |  |
| Carbonate                                                   | Life Cycle Assessment                                                                         | America   |      | Process models average global technology<br><b>Time:</b> very good<br>Data is <5 years old<br><b>Geography:</b> fair<br>Data is representative of global conditions.                                       |  |  |  |  |
| E-Glass Multi<br>End Roving                                 | ecoinvent 3: Glass fibre<br>{RoW}  production   Cut-off, U                                    | Global    | 2018 | Technology: very good<br>Process models average global technology<br>Time: very good<br>Data is <5 years old<br>Geography: very good<br>Data is representative of global conditions.                       |  |  |  |  |
| ATH Aluminum<br>Hydroxide                                   | ecoinvent 3: Aluminium<br>hydroxide {RoW}  aluminium<br>hydroxide production   Cut-<br>off, U | Global    | 2018 | Technology: very good<br>Process models average global technology<br>Time: very good<br>Data is <5 years old<br>Geography: very good<br>Data is representative of global conditions.                       |  |  |  |  |
| Peroxide and<br>Zinc Stearate                               | ecoinvent 3: Chemical,<br>inorganic {GLO}  production  <br>Cut-off, U                         | Global    | 2018 | Technology: very good<br>Process models average global technology<br>Time: very good<br>Data is <5 years old<br>Geography: very good<br>Data is representative of global conditions.                       |  |  |  |  |
| Magnesium<br>Oxide                                          | ecoinvent 3: Magnesium<br>oxide {RoW}  production  <br>Cut-off, U                             | Global    | 2018 | Technology: very good<br>Process models average global technology<br>Time: good<br>Data is <5 years old<br>Geography: very good<br>Data is representative of global conditions.                            |  |  |  |  |





### **MCFR Block**

### Environmental Product Declaration

| A2: Transporta              | tion                                                                                                      |           |      |                                                                                                                                                                                                      |
|-----------------------------|-----------------------------------------------------------------------------------------------------------|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs                      | LCI Data Source                                                                                           | Geography | Year | Data Quality Assessment                                                                                                                                                                              |
| Trucking                    | ecoinvent 3: Transport,<br>freight, lorry 7.5-16 metric ton,<br>EURO3 {GLO}  market for  <br>Alloc Rec, U | Global    | 2018 | Technology: very good<br>Process models average global technology<br>Time: good<br>Data is <5 years old<br>Geography: very good<br>Data is representative of global conditions.                      |
| A3: Manufactur              | ring                                                                                                      |           |      |                                                                                                                                                                                                      |
| Energy                      | LCI Data Source                                                                                           | Geography | Year | Data Quality Assessment                                                                                                                                                                              |
| Electricity                 | Ortadoğu Enerji                                                                                           | Turkey    | 2021 | Technology: very good<br>Time: very good<br>Geography: very good.                                                                                                                                    |
| Ancillary<br>Material       | LCI Data Source                                                                                           | Geography | Year | Data Quality Assessment                                                                                                                                                                              |
| Hydraulic fluid             | ecoinvent 3: Diesel {RoW} <br>diesel production, petroleum<br>refinery operation   Cut-off, U             | Global    | 2018 | <b>Technology:</b> very good<br>Process models average global technology<br><b>Time:</b> good<br>Data is <5 years old<br><b>Geography:</b> very good<br>Data is representative of global conditions. |
| Packaging                   | LCI Data Source                                                                                           | Geography | Year | Data Quality Assessment                                                                                                                                                                              |
| Wooden pallet               | ecoinvent 3: EUR-flat pallet<br>{GLO}  market for   Cut-off, U                                            | Global    | 2018 | Technology: very good<br>Process models average global technology<br>Time: very good<br>Data is <5 years old<br>Geography: very good<br>Data is representative of global conditions.                 |
| Plastic packing<br>and film | ecoinvent 3: Packaging film,<br>low density polyethylene<br>{RoW}  production   Cut-off, U                | Global    | 2018 | Technology: very good<br>Process models average global technology<br>Time: good<br>Data is <5 years old<br>Geography: very good<br>Data is representative of global conditions.                      |





**MCFR Block** 

#### 3.7 Period under Review

Data was gathered for the primary material and energy inputs used in the production for calendar year 2020.

#### 3.8 Allocation

At Renco's Turkey facility several MCFR products are produced. Since the primary data for manufacturing was only available on a facility level, the environmental load among the products produced is allocated according to its mass. For waste that is recycled, the 'recycled content approach' was chosen. The recycling of waste generated by the product system is cut off.

#### 3.9 Comparability

This LCA was created using industry average data for upstream materials. Data variation can result from differences in supplier locations, manufacturing processes, manufacturing efficiency and fuel types used.

### 4. LCA Results

Life cycle impact assessment (LCIA) is the phase in which the set of results of the inventory analysis – the inventory flow table – is further processed and interpreted in terms of environmental impacts and resource use inventory metrics. Table 4 and 5 below summarizes the LCA results for the cradle-to-gate (A1-A3) product system.

| Table               | Table 4: Description of the System Boundary (x: included in LCA; mnd: module not declared; mnr: module not reported) |               |              |                                |     |             |        |             |               |                        |                       |                                |           |                  |                               |                    |          |           |
|---------------------|----------------------------------------------------------------------------------------------------------------------|---------------|--------------|--------------------------------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|--------------------------------|-----------|------------------|-------------------------------|--------------------|----------|-----------|
| Product             |                                                                                                                      |               | Cons<br>Inst | truction<br>allation           |     | Use         |        |             |               |                        | End-o                 | f-life                         |           | Bene<br>th<br>B  | efits Bo<br>le Syst<br>Sounda | eyond<br>em<br>ary |          |           |
| Raw Material supply | Transport                                                                                                            | Manufacturing | Transport    | Construction /<br>Installation | Use | Maintenance | Repair | Replacement | Refurbishment | Operational Energy Use | Operational Water Use | De-Construction/<br>Demolition | Transport | Waste processing | Disposal                      | Reuse              | Recovery | Recycling |
| A1                  | A2                                                                                                                   | A3            | A4           | A5                             | B1  | B2          | B3     | B4          | B5            | B6                     | B7                    | C1                             | C2        | C3               | C4                            | D                  | D        | D         |
| х                   | х                                                                                                                    | х             | mnd          | mnd                            | mnd | mnd         | mnr    | mnr         | mnr           | mnd                    | mnd                   | mnd                            | mnd       | mnd              | mnd                           | mnd                | mnd      | mnd       |





### **MCFR Block**

### Environmental Product Declaration

| Table 5. Life Cycle Impact Assessment Results for 1 kg MCFR Blocks |         |              |          |          |          |          |  |  |  |
|--------------------------------------------------------------------|---------|--------------|----------|----------|----------|----------|--|--|--|
| Environmental Indicator                                            | Abbrev. | Units        | Total    | A1       | A2       | A3       |  |  |  |
| Core Mandatory Impact Indicator                                    |         |              |          |          |          |          |  |  |  |
| Global warming potential                                           | GWP     | kg CO2-eq    | 9.94E-01 | 9.06E-01 | 3.23E-02 | 5.55E-02 |  |  |  |
| Depletion potential of the stratospheric ozone layer               | ODP     | kg CFC-11-eq | 6.53E-08 | 5.41E-08 | 7.69E-09 | 3.46E-09 |  |  |  |
| Acidification potential of land and water                          | АР      | kg SO2-eq    | 6.06E-03 | 5.61E-03 | 1.96E-04 | 2.63E-04 |  |  |  |
| Eutrophication potential                                           | EP      | kg PO4-eq    | 4.12E-03 | 3.97E-03 | 3.88E-05 | 1.07E-04 |  |  |  |
| Formation of tropospheric ozone                                    | SFP     | Kg O3-eq     | 8.74E-02 | 7.86E-02 | 5.03E-03 | 3.80E-03 |  |  |  |
| Abiotic depletion potential for fossil resources                   | ADPF    | MJ Surplus   | 1.17E+01 | 9.90E+00 | 4.80E-01 | 1.30E+00 |  |  |  |
| Fossil Fuel Depletion                                              | FFD     | MJ Surplus   | 1.29E+00 | 1.04E+00 | 6.95E-02 | 1.73E-01 |  |  |  |
| Use of Primary Resources                                           |         |              |          |          |          |          |  |  |  |
| Renewable primary energy carrier used as energy                    | RPRE    | MJ           | 2.30E+00 | 8.24E-01 | 6.37E-03 | 1.47E+00 |  |  |  |
| Renewable primary energy carrier used as material                  | RPRM    | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Non-renewable primary energy used as energy                        | NRPRE   | MJ           | 1.31E+01 | 1.11E+01 | 5.19E-01 | 1.50E+00 |  |  |  |
| Non-renewable primary energy used as material                      | NRPRM   | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Secondary Material, Secondary Fuel and Recovered Er                | nergy   |              |          |          |          |          |  |  |  |
| Use of secondary materials                                         | SM      | kg           | 4.25E-01 | 4.25E-01 | 0.00E+00 | 0.00E+00 |  |  |  |
| Use of renewable secondary fuels                                   | RSF     | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Use of non-renewable secondary fuels                               | NRSF    | MJ           | 2.73E+00 | 0.00E+00 | 0.00E+00 | 2.73E+00 |  |  |  |
| Recovered energy                                                   | RE      | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Mandatory Inventory Parameters                                     |         |              |          |          |          |          |  |  |  |
| Use of freshwater resources                                        | FW      | m3           | 8.21E-03 | 7.85E-03 | 8.31E-05 | 2.78E-04 |  |  |  |
| Indicators Describing Waste                                        |         |              |          |          |          |          |  |  |  |
| Disposed of hazardous waste                                        | HWD     | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Disposed of non-hazardous waste                                    | NHWD    | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Disposed of high level radioactive waste                           | HLRW    | m3           | 5.25E-10 | 4.70E-10 | 5.62E-12 | 4.91E-11 |  |  |  |
| Disposed of low level radioactive waste                            | LLRW    | m3           | 6.60E-09 | 4.86E-09 | 1.30E-09 | 4.43E-10 |  |  |  |
| Components for reuse                                               | CRU     | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Materials for recycling                                            | MFR     | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Materials for energy recovery                                      | MER     | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Exported electrical energy (waste to energy)                       | EEE     | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| Exported thermal energy (waste to energy)                          | ETE     | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |





### **MCFR Block**

### Environmental Product Declaration

| Table 5. Life Cycle Impact Assessment Results for 1 m3 MCFR Blocks |           |              |          |          |          |          |  |  |  |  |
|--------------------------------------------------------------------|-----------|--------------|----------|----------|----------|----------|--|--|--|--|
| Environmental Indicator                                            | Abbrev.   | Units        | Total    | A1       | A2       | A3       |  |  |  |  |
| Core Mandatory Impact Indicator                                    |           |              |          |          |          |          |  |  |  |  |
| Global warming potential                                           | GWP       | kg CO2-eq    | 2.42E+02 | 2.21E+02 | 7.89E+00 | 1.35E+01 |  |  |  |  |
| Depletion potential of the stratospheric ozone layer               | ODP       | kg CFC-11-eq | 1.59E-05 | 1.32E-05 | 1.88E-06 | 8.45E-07 |  |  |  |  |
| Acidification potential of land and water                          | АР        | kg SO2-eq    | 1.48E+00 | 1.37E+00 | 4.78E-02 | 6.42E-02 |  |  |  |  |
| Eutrophication potential                                           | EP        | kg PO4-eq    | 1.00E+00 | 9.69E-01 | 9.47E-03 | 2.62E-02 |  |  |  |  |
| Formation of tropospheric ozone                                    | SFP       | Kg O3-eq     | 2.13E+01 | 1.92E+01 | 1.23E+00 | 9.27E-01 |  |  |  |  |
| Abiotic Depletion Potential for Fossil Resources                   | ADPF      | MJ Surplus   | 2.85E+03 | 2.42E+03 | 1.17E+02 | 3.18E+02 |  |  |  |  |
| Fossil Fuel Depletion                                              | FFD       | MJ Surplus   | 3.14E+02 | 2.55E+02 | 1.69E+01 | 4.22E+01 |  |  |  |  |
| Use of Primary Resources                                           |           |              |          |          |          |          |  |  |  |  |
| Renewable primary energy carrier used as<br>energy                 | RPRE      | MJ           | 5.62E+02 | 2.01E+02 | 1.55E+00 | 3.59E+02 |  |  |  |  |
| Renewable primary energy carrier used as material                  | RPRM      | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Non-renewable primary energy carrier used as<br>energy             | NRPRE     | MJ           | 3.20E+03 | 2.70E+03 | 1.27E+02 | 3.66E+02 |  |  |  |  |
| Non-renewable primary energy carrier used as material              | NRPRM     | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Secondary Material, Secondary Fuel and Recover                     | ed Energy | -            |          |          |          |          |  |  |  |  |
| Use of secondary materials                                         | SM        | kg           | 1.04E+02 | 1.04E+02 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Use of renewable secondary fuels                                   | RSF       | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Use of non-renewable secondary fuels                               | NRSF      | MJ           | 6.66E+02 | 0.00E+00 | 0.00E+00 | 6.66E+02 |  |  |  |  |
| Recovered energy                                                   | RE        | MJ           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Mandatory Inventory Parameters                                     |           |              |          |          |          |          |  |  |  |  |
| Use of freshwater resources                                        | FW        | m3           | 2.00E+00 | 1.92E+00 | 2.03E-02 | 6.77E-02 |  |  |  |  |
| Indicators Describing Waste                                        |           |              |          |          |          |          |  |  |  |  |
| Disposed of hazardous waste                                        | HWD       | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Disposed of non-hazardous waste                                    | NHWD      | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Disposed of high level radioactive waste                           | HLRW      | m3           | 1.28E-07 | 1.15E-07 | 1.37E-09 | 1.20E-08 |  |  |  |  |
| Disposed of low level radioactive waste                            | LLRW      | m3           | 1.61E-06 | 1.19E-06 | 3.16E-07 | 1.08E-07 |  |  |  |  |
| Components for reuse                                               | CRU       | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Materials for recycling                                            | MFR       | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Materials for energy recovery                                      | MER       | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Exported electrical energy (waste to energy)                       | EEE       | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |
| Exported thermal energy (waste to energy)                          | ETE       | kg           | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |





RENCO MCFR Block

### 5. Interpretation

Figure 1 shows the relative contribution to the cumulative impacts of the A1 through A3 phases of the cradle-to-gate life cycle. For MCFR Blocks, the raw material supply (A1) is the major contributor to the overall impact across the selected impact categories. This is since A1 incorporates all the upstream extraction and production of the chemical inputs. Transportation (A2) impacts are small in all declared product blocks (0.94 - 11.78%). The manufacturing (A3) is also small for most impact categories (2.61 - 11.16%).



Figure 1. Contribution analysis for MCFR Blocks





Environmental Product Declaration

#### MCFR Block

#### 6. References

- 1. Athena Institute: 2020 A Cradle-to-Gate Life Cycle Assessment of MCFR Products Manufactured by RENCO
- ISO 21930: 2017 Building construction Sustainability in building construction Environmental declaration of building products.
- 3. ISO 14025: 2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- 1. ISO 14044:2006/AMD 1:2017/ AMD 2:2020 Environmental management Life cycle assessment Requirements and guidelines.
- 2. 14040:2006/AMD 1:2020 Environmental management Life cycle assessment Principles and framework.

